中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Effect of Qizhu prescription on a mouse model of non-alcoholic fatty liver disease incluced by high-fat, high-fructose, and high-cholesterol diet and its mechanism

DOI: 10.12449/JCH241113
Research funding:

Shanghai 2021 “Science and Technology Innovation Action Plan” Biomedical Science and Technology Support Special Project (21S1900400);

Natural Science Foundation of Anhui Province (2308085MH293);

Key Scientific Research Project of Anhui Province (2023AH040098);

Health as a key project of scientific research in anhui province (AHWJ2023A10035);

The state administration of traditional Chinese medicine high level key discipline construction project of traditional Chinese medicine (TCM liver epidemiology) (zyyzdxk-2023060)

More Information
  • Corresponding author: ZHOU Zhenhua, jinghua1220@163.com (ORCID: 0000-0002-5639-3857)
  • Received Date: 2024-05-23
  • Accepted Date: 2024-07-11
  • Published Date: 2024-11-25
  •   Objective  To investigate the therapeutic effect and mechanism of action of Qizhu prescription in mice with non-alcoholic fatty liver disease (NAFLD).  Methods  A total of 60 male C57BL/6J mice were randomly divided into normal group, model group, low-dose Qizhu prescription group (4.75 g/kg), middle-dose Qizhu prescription group (9.50 g/kg), high-dose Qizhu prescription group (19.00 g/kg), Yishanfu group (228 mg/kg), with 10 mice in each group. After 16 weeks of modeling with a high-fat high-cholesterol diet and 20% fructose water, each group was given the corresponding drug once a day for 8 weeks. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) were measured; ELISA was used to measure the serum levels of free fatty acid (FFA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), superoxide dismutase (SOD), and malondialdehyde (MDA); HE staining and oil red O staining were used to the pathological changes of liver tissue; Western blot was used to measure the protein expression levels of LC3BⅡ/Ⅰ, p62/SQSTM1, Beclin-1, and Drp1, and real-time PCR was used to measure the mRNA expression levels of Drp1, Beclin-1, and p62/SQSTM1. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups.  Results  Compared with the normal group, the model groups had significant increases in the serum levels of TG, TC, ALT, AST, LDL, FFA, TNF-α, IL-1β, and MDA and a significant reduction in the serum level of SOD (P<0.05). HE staining showed that the mice in the model group had hepatocyte steatosis and a large number of fat vacuoles in liver tissue, and oil red O staining showed that the mice in the model group had a large number of red lipid droplets of varying sizes in hepatocytes, with a significant increase in the percentage of oil red O staining area compared with the normal group (P<0.05). Real-time PCR showed that compared with the normal group, the model group had significant increases in the mRNA expression levels of Drp1 and Beclin-1 and a significant reduction in the mRNA expression level of p62/SQSTM1 in liver tissue (all P<0.05), and Western blot showed that compared with the normal group, the model group had significant increases in the protein expression levels of Drp1, Beclin-1, and LC3BⅡ/Ⅰ and a significant reduction in the protein expression level of p62/SQSTM1 in liver tissue (all P<0.05). Compared with the model group, some Qizhu prescription groups and the Yishanfu group had significant reductions in the serum levels of TG, TC, ALT, AST, LDL, FFA, TNF-α, IL-1β, and MDA and a significant increase in the serum level of SOD (all P<0.05). Compared with the model group, each administration group had a significant improvement in steatosis of liver tissue, a significant reduction in the percentage of oil red O staining area, significant reductions in the mRNA expression levels of Drp1 and Beclin-1, and a significant increase in the mRNA expression level of p62/SQSTM1 (all P<0.05); there were significant reductions in the protein expression levels of Drp1, Beclin-1, and LC3BⅡ/Ⅰ, while some administration groups had a significant increase in the protein expression level of p62/SQSTM1 (all P<0.05), with a significantly better effect in the middle- and high-dose Qizhu prescription groups (all P<0.01).  Conclusion  Qizhu prescription improves lipid metabolism and inflammation in mice with NAFLD possibly by regulating hepatocyte mitophagy.

     

  • 妊娠期急性胰腺炎(acute pancreatitis in pregnancy,APIP)是妊娠期间少见的并发症之一,病情进展迅速,可能出现胰腺囊肿、坏死、急性呼吸窘迫综合征甚至多器官功能衰竭等不良并发症,严重威胁着母婴的生命健康。近些年由于早期诊断的改进和对孕产妇以及新生儿的重症监护水平的提高,病死率已经有所降低1-2。然而,APIP的发生会严重威胁妊娠期女性的母婴健康,需要临床医生高度重视。本研究通过收集APIP患者的相关资料,描述APIP的临床类型,分析病因、严重程度、并发症、实验室指标和预后,探讨病情加重的危险因素并试图建立预测模型,以期为APIP的诊疗提供临床依据。

    选取遵义医科大学附属医院2017年1月—2022年12月收治的APIP患者进行单中心、回顾性研究。纳入标准是入院48 h内诊断的APIP患者,排除标准包括慢性胰腺炎和病史不全的患者。

    AP的诊断是基于修订的Atlanta标准3,至少包括以下3项标准中的2项:(1)急性上腹部疼痛;(2)血清淀粉酶和脂肪酶高于正常值上限的3倍;(3)典型的影像学表现。APIP定义4为怀孕期和生产后42天内发生AP。APIP的严重程度根据修订的Atlantic标准分为3种:(1)轻型急性胰腺炎(MAP)是指不会出现器官衰竭和局部并发症;(2)中度重症胰腺炎(MSAP)是指出现持续时间小于48 h的短暂性器官衰竭或并发症;(3)重症胰腺炎(SAP)是指持续性器官衰竭或局部/全身并发症超过48 h。APIP按不同的病因5进行分类,包括高甘油三酯性胰腺炎、急性胆源性胰腺炎和特发性胰腺炎。当血液中甘油三酯>11.3 mmol/L(1 000 mg/dL)或甘油三酯为5.65~11.3 mmol/L,排除其他致病因素,且血清呈现乳糜状可考虑诊断为高甘油三酯性胰腺炎6-7。特发性胰腺炎是指经体格检查、实验室及影像学检查仍然无法明确病因。妊娠时期分为妊娠早期(1~3个月)、妊娠中期(4~6个月)和妊娠晚期(7~10个月)。器官功能障碍基于Ranson评分系统8和APACHE Ⅱ系统进行评估。局部并发症包括急性胰周积液、胰腺假性囊肿、急性坏死和包膜坏死。全身并发症包括脓毒症、急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)、器官功能衰竭、腹腔内高压和腹腔间隔综合征9

    从电子病例中收集纳入APIP患者的一般信息、临床资料及预后。一般信息包括孕妇年龄、孕育史、病因、发病孕龄。临床资料包括病理分型、严重程度、临床症状、住院时间、剖宫产或者引产、是否进入ICU及ICU停留时间、进入ICU时的APACHE Ⅱ评分、入院时Ranson评分、入院24 h内的检验指标[血尿淀粉酶、白细胞计数、中性粒细胞分类、淋巴细胞比例、中性粒细胞/淋巴细胞比值(NLR)、血小板计数、钾、钠、钙、ALT、AST、白蛋白、尿素氮、肌酐、血糖、甘油三酯、胆固醇、CRP、国际标准化比率(INR)、PT、部分活化凝血酶原时间(APTT)]、影像学检查[超声、CT、磁共振胰胆管成像(MRCP)]、并发症。此外,干预措施和母婴结局也被详细收集。

    采用SPSS 26.0软件对数据资料进行统计分析。符合正态分布且方差齐的计量资料以x¯±s表示,多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验;非正态分布的计量资料以MP25P75)表示,多组间比较采用Kruskal-Wallis H检验,进一步两两比较采用Wilcoxon检验。计数资料的组间比较采用χ2检验。对单因素Logistic回归分析组间有统计学意义的变量进行多因素Logistic回归分析。绘制受试者工作特征曲线(ROC曲线),利用曲线下面积(AUC)衡量危险因素对APIP病情严重程度的预测价值。P<0.05为差异有统计学意义。

    本院在2017年1月—2022年12月共收治妊娠期妇女26 255例,根据纳入和排除标准,52例APIP患者被纳入本研究,APIP发病率为1.9/1 000。纳入患者的人口统计学和临床特征如表1所示,年龄18~43岁,平均(29.17±5.67)岁。17例(32.7%)患者为初产妇,35例(67.3%)患者为经产妇。依据发病孕周分组:1例(1.9%)妊娠早期、25例(48.1%)妊娠中期、26例(50.0%)妊娠晚期。依据疾病严重程度分组:32例(61.5%)患者为MAP、8例(15.4%)患者为MSAP、12例(23.1%)患者为SAP。按病因分组:26例(50.0%)患者为高脂性胰腺炎、20例(38.5%)患者为胆源性胰腺炎、6例(11.5%)患者为特发性胰腺炎。依据疾病病理类型分组:37例(71.2%)患者为水肿型胰腺炎、15例(28.8%)患者为坏死性胰腺炎。腹痛和呕吐是APIP患者最主要的两种临床症状,有51例(98.1%)患者存在腹痛症状、25例(48.1%)患者同时存在腹痛伴呕吐、1例(1.9%)患者仅表现出呕吐症状。患者中位住院时间为6.5(4.0~13.8)天。20例(38.4%)患者因病情变化入住ICU,ICU停留时间为7(5~11)天。52例患者中位住院费用为10 086.27(2 684.86~49 095.19)元。

    表  1  不同严重程度APIP患者的基线特征
    Table  1.  Baseline characteristics of APIP patients with different severity
    项目 MAP(n=32) MSAP(n=8) SAP(n=12) 统计值 P
    年龄(岁) 29.00±5.84 27.00±5.95 31.08±4.80 F=1.299 0.282
    初产妇[例(%)] 23(71.8) 4(50.0) 8(66.7) χ2=1.507 0.534
    发病孕期[例(%)] χ2=1.783 0.434
    早期 0(0.0) 0(0.0) 1(8.3)
    中期 18(56.3) 3(37.5) 4(33.3)
    晚期 14(43.8) 5(62.5) 7(58.3)
    病因[例(%)]
    胆源性 13(40.6) 5(62.5) 2(16.7) χ2=8.159 0.059
    高脂性 16(50.0) 1(12.5) 9(75.0)
    特发性 3(9.4) 2(25.0) 1(8.3)
    水肿型[例(%)] 27(84.4)1) 7(87.5)1) 3(25.0) χ2=14.302 0.001
    入住ICU[例(%)] 3(9.4)1) 5(62.5)1) 12(100.0) χ2=34.993 <0.001
    ICU停留时间(天) 0.00(0.00~0.00)1) 3.00(0.00~5.00)1) 9.50(7.00~11.75) H=7.955 0.019
    住院时间(天) 5.00(3.25~6.75) 14.00(8.00~17.75)2) 14.50(12.25~45.25)2) H=23.095 <0.001
    治疗费用(元) 3 988.34 (1 573.14~10 175.92)1) 44 933.84 (9 547.35~71 369.44)2) 75 828.25 (48 981.25~192 749.73) H=28.702 <0.001
    注:与SAP组比较,1)P<0.05;与MAP组比较,2)P<0.05。
    下载: 导出CSV 
    | 显示表格

    不同严重程度APIP患者的年龄、病因、孕育史和发病孕期的组间差异无统计学意义(P值均>0.05)。但是在病理类型、是否入住ICU、ICU停留时间、总住院时间和治疗费用方面均存在显著差异,进一步组内比较显示:在病理类型、是否入住ICU和ICU停留时间方面,SAP组与其他两组差异均有统计学意义(P值均<0.05)。同时病情越重,ICU停留时间越长(P=0.019)(表1)。

    不同严重程度APIP患者的ALT、AST、尿素氮、血糖、CRP、INR和NLR组间差异均有统计学意义(P值均<0.05)。进一步组内比较显示:与SAP组比较,MSAP组的ALT和AST水平明显升高(P值均<0.05),MAP组的尿素氮、血糖、CRP、INR和NLR明显降低(P值均<0.05)。而三组间的血淀粉酶、尿淀粉酶、白细胞计数、白蛋白、肌酐、甘油三酯和PT未见明显差异(P值均>0.05)(表2)。

    表  2  不同严重程度APIP患者的生化指标比较
    Table  2.  Comparison of biochemical indices in patients with APIP of different severities
    指标 MAP(n=32) MSAP(n=8) SAP(n=12) 统计值 P
    ALT(U/L) 18.00(9.50~25.50) 69.00(16.25~131.75)1) 10.50(5.50~25.00) H=7.102 0.029
    AST(U/L) 30.00(21.00~40.00) 79.00(34.00~143.25) 1) 26.00(17.75~66.50) H=6.366 0.041
    尿素氮(mmol/L) 2.53(1.93~3.49) 1) 3.75(2.43~6.26) 3.55(2.56~6.39) H=7.077 0.029
    血糖(mmol/L) 4.25(3.42~5.29) 1) 5.54(5.10~6.94) 7.01(5.67~7.88) H=9.935 0.007
    CRP(mg/L) 35.74(3.38~128.45) 1) 127.72(29.99~173.53) 154.20(59.22~175.22) H=7.288 0.026
    INR 0.84(0.78~0.92) 1) 0.89(0.83~0.95) 1.00(0.90~1.20) H=10.081 0.006
    NLR 9.00(4.00~17.50) 1) 17.50(10.00~24.50) 16.00(8.25~21.00) H=6.236 0.044
    血淀粉酶(U/L) 254.00(127.00~960.00) 414.00(142.00~1 040.50) 225.00(77.00~677.00) H=1.036 0.596
    尿淀粉酶(U/L) 2 720.00 (1 477.00~7 041.00) 1 285.00 (374.00~3 664.00) 535.00 (397.00~7 336.75) H=2.172 0.338
    白细胞计数(×109/L) 12.94(9.03~16.94) 15.00(14.12~16.03) 16.12(10.89~20.37) H=4.140 0.126
    白蛋白(g/L) 32.61±4.58 32.88±5.99 32.78±6.32 F=0.056 0.946
    肌酐(μmol/L) 47.72±16.06 54.88±16.88 54.83±27.77 F=0.830 0.442
    甘油三酯(mmol/L) 12.71(2.50~17.23) 3.32(2.65~4.89) 11.96(4.79~17.48) H=2.469 0.291
    PT(s) 14.45±21.17 10.66±0.91 12.70±2.59 F=0.177 0.839
    注:与SAP组比较,1)P<0.05。
    下载: 导出CSV 
    | 显示表格

    在合并症方面,2例(3.8%)患者合并妊娠期糖尿病。在并发症方面,6例(11.5%)患者合并脓毒症,5例(9.6%)患者存在肝功能不全,2例(3.8%)患者存在肾功能不全,16例(30.8%)患者合并肺炎,10例(19.2%)患者并发ARDS,2例(3.8%)患者存在凝血功能不全,7例(13.5%)患者合并腹腔感染。在干预措施上,并发ARDS的10例患者中有9例使用了呼吸机。有2例(3.8%)患者仅接受血液透析,1例(1.9%)患者仅接受血浆置换,2例(3.8%)患者接受血液透析联合血浆置换。在妊娠晚期的26例患者中有19例选择剖宫产或顺产,有1例选择提前引产,6例选择继续妊娠。不同严重程度APIP患者并发肺炎、ARDS、脓毒症、肝功能不全和凝血功能不全组间比较差异均有统计学意义(P值均<0.05)。进一步组内比较显示:MAP组和MSAP组比较,肝功能不全、ARDS发生率差异具有统计学意义(P值均<0.05);MSAP组和SAP组比较,脓毒症、肝功能不全发生率差异具有统计学意义(P值均<0.05);MAP组和SAP组比较,肺炎、腹腔感染、脓毒症、凝血功能不全和ARDS发生率差异具有统计学意义(P值均<0.05)。

    入院后23例(44.2%)患者行剖宫产或顺产,1例(1.9%)引产,28例(53.8%)未终止妊娠,三组间产科干预方式差异无统计学意义(P>0.05)。随访52例患者,44例(84.6%)母婴存活,7例(13.5%)胎儿丢失,无APIP患者死亡事件发生。其中妊娠早期1例胎儿丢失,妊娠中期5例患胎儿丢失,妊娠晚期1例胎儿丢失。在随访胎儿丢失率方面,三组患者的差异无统计学意义(P>0.05)。不同严重程度APIP患者的APACHEⅡ评分比较差异有统计学意义(P<0.05),组内比较显示:SAP组显著高于MAP组和MSAP组。而Ranson评分在三组间差异无统计学意义(P>0.05)(表3)。

    表  3  不同严重程度APIP患者的并发症及预后比较
    Table  3.  Complications and prognosis of APIP with different severity
    项目 MAP(n=32) MSAP(n=8) SAP(n=12) 统计值 P
    并发症[例(%)]
    肺炎 3(9.4)1) 3(37.5) 10(83.3) χ2=21.828 <0.001
    肝功能不全 0(0.0) 4(50.0)1)2) 1(8.3) χ2=13.206 0.001
    腹腔感染 1(3.1)1) 1(12.5) 5(41.7) χ2=9.529 0.004
    凝血功能不全 0(0.0)1) 0(0.0) 2(16.7) χ2=6.933 0.031
    ARDS 0(0.0)1) 2(25.0)2) 8(66.7) χ2=23.865 <0.001
    脓毒症 0(0.0)1) 0(0.0)1) 6(50.0) χ2=16.810 <0.001
    评分
    APACHEⅡ评分 9.67±1.531) 12.20±3.901) 14.50±4.40 F=6.068 0.010
    Ranson评分 2.0(2.0~2.0) 3.0(2.5~3.5) 3.0(2.5~4.0) H= 4.871 0.088
    结局[例(%)]
    胎儿存活 29(90.6) 6(75.0) 9(75.0) χ2=2.308 0.315
    注:与SAP组比较,1)P<0.05;与MAP组比较,2)P<0.05。
    下载: 导出CSV 
    | 显示表格

    对不同严重程度APIP患者间存在统计学意义的变量进行单因素回归分析显示,APIP严重程度与血糖、尿素氮、CRP、肺炎具有相关性(P值均<0.05)。对单因素回归分析中存在统计学意义的变量采取多因素有序Logistic回归分析,结果显示,肺炎是影响APIP严重程度的危险因素(P=0.048)(表4)。

    表  4  APIP严重程度危险因素分析
    Table  4.  Analysis of risk factors of APIP severity
    指标 单因素分析 多因素分析
    OR P 95%CI OR P 95% CI
    血糖 1.671 0.014 1.109~2.519 2.825 0.155 0.675~11.820
    尿素氮 1.638 0.022 1.075~2.496 1.897 0.205 0.704~5.108
    CRP 1.015 0.019 1.002~1.027 1.000 0.975 0.979~1.022
    肺炎 48.333 0.001 7.028~332.383 18.938 0.048 1.020~351.747
    下载: 导出CSV 
    | 显示表格

    ROC曲线分析结果显示CRP、血糖、尿素氮、INR对病情严重程度预测值AUC分别为0.778、0.796、0.721、0.801。将四种指标联合检测预测APIP严重程度的AUC值最大(0.954),具有更高的诊断效能(表5图1)。

    表  5  不同指标对APIP严重程度预测值
    Table  5.  Predicted values of APIP severity by different indicators
    指标 AUC 敏感度(%) 特异度(%) 准确度(%) P
    CRP 0.778 66.70 83.30 50.00 0.011
    血糖 0.796 71.00 83.30 54.30 0.030
    尿素氮 0.721 46.90 91.70 38.60 0.025
    INR 0.801 67.70 83.30 51.00 0.002
    联合检测 0.954 83.30 100.00 83.30 <0.001
    下载: 导出CSV 
    | 显示表格
    图  1  CRP、血糖、尿素氮、INR和联合指标预测APIP严重程度的ROC曲线
    Figure  1.  The ROC curve of CRP, Glu, BUN, INR, and combined indicators predicting the severity of APIP

    妊娠期胰腺炎是指在妊娠期间发生的AP,是一种相对罕见但严重的疾病,可能导致母亲和胎儿出现严重的并发症。既往研究10-11显示APIP发病率高达1/1 000~1/10 000,而普通人群中胰腺炎的发病率为30~40/100 00012,可见妊娠期间胰腺炎发病率高于普通人群。本研究中APIP发病率1.9/1 000,意味着遵义地区APIP发生率符合既往研究。APIP患者的腹痛、腹胀临床表现由于妊娠状态的特殊性,可能会被误诊,若未能及时干预,容易进展为SAP,可引起多器官功能障碍、ARDS、全身炎症反应综合征等并发症,严重者可危及母婴的生命安全13。伴随着APIP发病率的逐年增加,早期有效的诊断和去重症化是改善APIP患者预后的难点。在APIP患者发病过程中,由于漏诊甚至误诊,在分娩前未能明确诊断,只有在产后早期通过CT的辅助下才被诊断出来,因此产后42天内诊断的AP也被纳入本次研究。

    APIP可在任一妊娠期发病,但更常见于妊娠中期及晚期14,本研究52例患者中妊娠晚期患者占比50.0%,妊娠中期占比48.1%。随着孕期的增加,子宫增大会压迫胰腺和胆囊,胆胰管受压阻力增加,直接影响胆汁和胰酶的分泌,同时妊娠晚期孕妇的BMI较前明显增加,高水平的甘油三酯也会影响胰腺功能。在妊娠早期由于疾病和药物的使用可能会影响胎儿的发育甚至造成畸形,一些患者选择早期人工流产。本研究中仅有1例孕妇在妊娠早期发病,样本量较小,同时研究也显示在妊娠中期和妊娠晚期胎儿结局未见明显差异。在初产妇和经产妇方面,既往的研究15显示发生APIP中大约三分之一的患者是初产妇。本研究中也观察到了类似的比例,初产妇占32.7%,经产妇占67.3%。

    既往西方的研究16发现引起APIP的最常见病因是胆结石,然而已发表的多项国内临床研究17-18中显示我国APIP发病的最常见病因是高甘油三酯血症,这表明APIP的病因在我国和西方之间存在差异。在妊娠的过程中,为了合成胎儿生长发育所需的营养物质,血液中脂类物质的合成会增加,降解减少19。我国孕妇受传统理念影响,少有孕期饮酒,但膳食结构比例不均衡,肉源性食物占比偏高,导致脂肪堆积和剩余能量过多。在多种原因下妊娠期甘油三酯水平增高,然而胰脂肪酶分解甘油三酯时生成的游离脂肪酸可能对胰腺细胞造成损伤,同时较大的乳糜微粒亦可能阻塞胰腺毛细血管,导致局部缺血情况产生20。在本研究中,高脂血症(50.0%)是APIP患者最常见的病因,其次为胆源性(38.5%),无酒精性胰腺炎。研究结果与既往对于我国APIP病因的研究结论类似。一些研究19-20发现甘油三酯>11.03 mmol/L与APIP病情严重程度相关,本研究SAP组中所纳入的高脂性占比75.0%,然而研究中APIP病情严重程度与不同病因之间的差异无显著意义(P=0.059)。

    本研究中对多项检验指标进行了统计,其中血糖、尿素氮、CRP和NLR在不同严重程度APIP患者间差异有统计学意义。对单因素回归分析中存在统计学意义的变量采取多因素有序Logistic回归分析显示:肺炎是影响APIP严重程度的危险因素(OR=18.938,P=0.048)。彭容等21研究展现了肺炎与AP严重程度的关系, 发现肺炎累及肺叶数目能预测AP严重程度,这与本研究中肺炎是影响APIP严重程度危险因素一致。我国台湾的一项研究22发现糖尿病与AP的严重程度增加相关,并且在女性患者中这种关系更加明显。此外,日本一项观察性研究23显示糖尿病患者发生AP的风险增加。多项证据提示血糖与胰腺炎严重程度相关。本研究中血糖水平在不同严重程度APIP患者间差异有统计学意义。CRP是炎症性疾病使用最广泛的非特异性标志物,已被广泛运用于AP严重程度分层24。本研究中CRP在不同严重程度APIP患者间差异有统计学意义。CRP是APIP严重程度的危险因素之一,其对APIP严重程度具有良好的预测价值,AUC为0.778,敏感度为66.7%,特异度为83.3%,验证了CRP与APIP严重程度密切相关。NLR与中性粒细胞和淋巴细胞之间的平衡相关,包含炎症和免疫系统,被用于预测脓毒症、炎性肠病、AP等相关炎性疾病的严重程度25。Kong等26发现,NLR具有预测AP严重程度的诊断价值。本研究显示,NLR在SAP组水平显著高于MAP组,差异具有统计学意义。临床研究中单一指标的检测敏感度往往低于多个指标联合检测,本研究中多种临床指标预测APIP严重程度的ROC曲线分析显示,联合指标(尿素氮、血糖、CRP、INR)预测APIP严重程度的AUC、准确度和敏感度,均高于各项指标单独检测值。此外,本研究显示不同严重程度APIP患者间的甘油三酯水平未见差异,究其原因发现在胰腺损伤的发生与发展过程中高血脂是重要但不是唯一因素,同时存在其他多种重要因素的参与。患者出现肺炎、ARDS、肝肾功能不全、脓毒症等多种并发症除了与胰腺损伤程度相关,还与患者基础疾病、免疫状态、感染程度等多种因素相关,而胰腺炎重症化的关键原因是过度的炎症反应引发的机体免疫调节紊乱。

    AP的严重程度受器官衰竭的影响,可通过评分系统进行病情评估。包括Ranson评分、BISAP评分、APACHEⅡ评分、SOFA评分和Balthazar CT评分等评分系统。APACHEⅡ评分是被普遍应用于重症监护病房的具权威性的病情评估系统,目前在临床实践中得到广泛的使用。Ranson评分是一种用于评估胰腺炎严重程度和预测预后的评分系统,指导治疗决策。以上两种评分系统已被应用于胰腺炎的临床实践,但在APIP患者中实用效能的临床研究较少。本研究中发现APIP病情越严重,APACHE Ⅱ评分越高(P=0.010)。而对于Ranson评分不同APIP严重程度未发现显著差异。AP中肺部是最常受累的器官之一,肺损伤是胰腺炎病情加重的主要表现。胰腺损伤产生多种细胞因子和炎症介质的释放,这些细胞因子和炎症介质介导了全身炎症反应综合征的发展,最终产生ARDS等多种器官衰竭27。肺炎可加重炎症的级联反应,过度激活炎症细胞及炎症因子造成肺血管内皮破坏28,此外病原菌可造成直接损害。凝血和纤溶过程与ARDS的进程息息相关,纤维蛋白在肺泡腔中堆积可损伤肺组织。此外,合并有弥散性血管内凝血者,肺小动脉血栓可进一步加重ARDS的进程。妊娠期糖尿病血糖控制不佳可降低机体免疫力,增加对病原菌的易感性29,从而加重胰腺损伤和肺炎的发生,进而引发ARDS。本研究中有10例患者并发ARDS,其发生率为19.2%,且有9例使用了呼吸机辅助呼吸。意味着APIP患者并发ARDS风险较高,并增加了呼吸机使用率和结局风险。

    APIP的诊断通过实验室检测和影像学检查进行。实验室检测包括血常规、血尿淀粉酶、脂肪酶、甘油三酯等,而影像学检查包括腹部超声、CT、MRCP和内镜超声等,早期完善辅助检验及检查是明确APIP病因的必要条件。然而CT对胎儿存在辐射限制了它的使用,而腹部超声及MRCP则不存在辐射风险,更易被患者接受。本研究中有46例(88.5%)患者在入院时选择腹部超声等影像学方法诊断胰腺炎并住院治疗,这表明我国大部分孕妇更愿选择相对安全的检查方法。妊娠期MAP多采取保守支持治疗,包括住院治疗、静脉输液、镇痛等,而MSAP和SAP按病因应接受血浆置换、内镜甚至手术干预。此外,妊娠期MAP的住院天数和住院费用远小于MSAP和SAP,意味着早期明确诊断和及时干预的重要性。

    综上,AP可能会危及母婴的生命,需多学科协助。高甘油三酯血症是最常见的病因,并且APIP严重程度与血糖、尿素氮、CRP、肺炎具有相关性。故应当早期诊断,尽早干预,避免并发症,去重症化。同时在诊断和治疗过程中应考虑干预措施对胎儿的副作用,加强对胎儿的监测,适时终止妊娠,从而改善母婴预后。

  • [1]
    QUEK J, CHAN KE, WONG ZY, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2023, 8( 1): 20- 30. DOI: 10.1016/S2468-1253(22)00317-X.
    [2]
    WONG VWS, EKSTEDT M, WONG GLH, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79( 3): 842- 852. DOI: 10.1016/j.jhep.2023.04.036.
    [3]
    CHEN JH, ZHOU ZH. Research progress of abnormal lipid metabolism and mitochondrial dysfunction in the pathogenesis and disease process of NAFLD[J]. Chin Hepatol, 2023, 28( 11): 1372- 1375. DOI: 10.3969/j.issn.1008-1704.2023.11.027.

    陈佳豪, 周振华. 肝细胞脂质代谢异常与线粒体功能障碍在NAFLD发病和疾病进程中的研究进展[J]. 肝脏, 2023, 28( 11): 1372- 1375. DOI: 10.3969/j.issn.1008-1704.2023.11.027.
    [4]
    REN QN, SUN QM, FU JF. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease[J]. Autophagy, 2024, 20( 2): 221- 241. DOI: 10.1080/15548627.2023.2254191.
    [5]
    XIN YJ, CHEN YY, YANG HL, et al. Effect of Xuanfuhua Decoction on a mouse model of nonalcoholic steatohepatitis induced by high-fat, high-fructose, and high-cholesterol diet[J]. J Clin Hepatol, 2023, 39( 6): 1340- 1350. DOI: 10.3969/j.issn.1001-5256.2023.06.014.

    辛一敬, 陈逸云, 杨海琳, 等. 旋覆花汤对高脂高果糖高胆固醇饮食诱导非酒精性脂肪性肝炎小鼠模型的影响[J]. 临床肝胆病杂志, 2023, 39( 6): 1340- 1350. DOI: 10.3969/j.issn.1001-5256.2023.06.014.
    [6]
    ZHANG QY, ZHOU ZH. Mechanism of non-alcoholic steatohepatitis improved by Qizhu prescription based on AMPK signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2024, 30( 8): 49- 56. DOI: 10.13422/j.cnki.syfjx.20232237.

    张秋怡, 周振华. 基于AMPK信号通路探讨芪术方改善非酒精性脂肪性肝炎的机制[J]. 中国实验方剂学杂志, 2024, 30( 8): 49- 56. DOI: 10.13422/j.cnki.syfjx.20232237.
    [7]
    FAKHOURY-SAYEGH N, TRAK-SMAYRA V, SAYEGH R, et al. Fructose threshold for inducing organ damage in a rat model of nonalcoholic fatty liver disease[J]. Nutr Res, 2019, 62: 101- 112. DOI: 10.1016/j.nutres.2018.11.003.
    [8]
    CHEN Z, TIAN RF, SHE ZG, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116- 141. DOI: 10.1016/j.freeradbiomed.2020.02.025.
    [9]
    SCHUSTER S, CABRERA D, ARRESE M, et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 6): 349- 364. DOI: 10.1038/s41575-018-0009-6.
    [10]
    ZHANG DW, ZHAO HY, LI QS, et al. Effect of AstragalosideIV and ginsenoside Rg1 on autophagy of myocardial tissue injury induced by ischemia-reperfusion injury in hyperlipidemic mice[J]. Chin Arch Tradit Chin Med, 2020, 38( 3): 60- 64. DOI: 10.13193/j.issn.1673-7717.2020.03.016.

    张东伟, 赵宏月, 李全生, 等. 黄芪甲苷及人参皂苷Rg1对高脂大鼠心肌缺血再灌注损伤后心肌线粒体自噬的影响[J]. 中华中医药学刊, 2020, 38( 3): 60- 64. DOI: 10.13193/j.issn.1673-7717.2020.03.016.
    [11]
    SU J, GAO CT, XIE L, et al. Astragaloside II ameliorated podocyte injury and mitochondrial dysfunction in streptozotocin-induced diabetic rats[J]. Front Pharmacol, 2021, 12: 638422. DOI: 10.3389/fphar.2021.638422.
    [12]
    LI SD, CHEN XJ, LIU JK, et al. Signaling pathways involved in the active components of Polygonum cuspidatum in treatment of nonalcoholic fatty liver disease and their interaction[J]. J Clin Hepatol, 2022, 38( 4): 902- 907. DOI: 10.3969/j.issn.1001-5256.2022.04.033.

    李淑娣, 陈欣菊, 刘江凯, 等. 虎杖活性成分治疗非酒精性脂肪性肝病的相关信号通路及相互作用[J]. 临床肝胆病杂志, 2022, 38( 4): 902- 907. DOI: 10.3969/j.issn.1001-5256.2022.04.033.
    [13]
    WANG Y, YANG ZY, LI SQ, et al. Regulatory mechanism of Polygonidine on endoplasmic reticulum stress in non⁃alcoholic fatty hepatocytes[J]. Anatomy Research, 2023, 45( 1): 57- 62. DOI: 10.20021/j.cnki.1671-0770.2023.01.10.

    王懿, 杨志勇, 李书芹, 等. 虎杖苷对非酒精性脂肪性肝细胞内质网应激的调控机制[J]. 解剖学研究, 2023, 45( 1): 57- 62. DOI: 10.20021/j.cnki.1671-0770.2023.01.10.
    [14]
    ZHANG PF, CHENG XY, SUN HM, et al. Atractyloside protect mice against liver steatosis by activation of autophagy via ANT-AMPK-mTORC1 signaling pathway[J]. Front Pharmacol, 2021, 12: 736655. DOI: 10.3389/fphar.2021.736655.
    [15]
    UENO T, KOMATSU M. Autophagy in the liver: Functions in health and disease[J]. Nat Rev Gastroenterol Hepatol, 2017, 14( 3): 170- 184. DOI: 10.1038/nrgastro.2016.185.
    [16]
    MA XW, MCKEEN T, ZHANG JH, et al. Role and mechanisms of mitophagy in liver diseases[J]. Cells, 2020, 9( 4): 837. DOI: 10.3390/cells9040837.
    [17]
    LU YY, LI ZJ, ZHANG SQ, et al. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation[J]. Theranostics, 2023, 13( 2): 736- 766. DOI: 10.7150/thno.79876.
    [18]
    LI L, JIA QL, WANG XX, et al. Chaihu Shugan San promotes gastric motility in rats with functional dyspepsia by regulating Drp-1-mediated ICC mitophagy[J]. Pharm Biol, 2023, 61( 1): 249- 258. DOI: 10.1080/13880209.2023.2166966.
    [19]
    LIU T, YU JN, LIU Y, et al. Effects of serum-free starvation on proliferative capacity of muscle satellite cells and expression of autophagy-related proteins LC3 and Beclin1[J]. Chin J Tissue Eng Res, 2019, 23( 11): 1657- 1661. DOI: 10.3969/j.issn.2095-4344.1062.

    刘通, 于佳妮, 刘悦, 等. 去血清饥饿条件下肌卫星细胞增殖及自噬蛋白LC3、Beclin1的表达[J]. 中国组织工程研究, 2019, 23( 11): 1657- 1661. DOI: 10.3969/j.issn.2095-4344.1062.
    [20]
    SUI XY, XU P, DUAN CZ, et al. Advances in molecular function of p62 protein and its role in diseases[J]. Chin J Biotechnol, 2023, 39( 4): 1374- 1389. DOI: 10.13345/j.cjb.220681.

    隋馨莹, 徐平, 段昌柱, 等. p62蛋白的分子功能及其在疾病中的研究进展[J]. 生物工程学报, 2023, 39( 4): 1374- 1389. DOI: 10.13345/j.cjb.220681.
    [21]
    YAO RQ, REN C, XIA ZF, et al. Organelle-specific autophagy in inflammatory diseases: A potential therapeutic target underlying the quality control of multiple organelles[J]. Autophagy, 2021, 17( 2): 385- 401. DOI: 10.1080/15548627.2020.1725377.
  • Relative Articles

    [1]Anqi LI, Peiran ZHAO, Yuqiang ZHAO, Rui WANG, Jing YANG. Mechanism of action of sterol regulatory element-binding proteins in nonalcoholic fatty liver disease and related therapeutic targets[J]. Journal of Clinical Hepatology, 2024, 40(7): 1459-1465. doi: 10.12449/JCH240726
    [2]Zhili XIAO, Chenxia LU, Danni ZHOU, Zhuangzhuang CHEN, Mingzhong XIAO, Xiaodong LI. Role of lipophagy in the prevention and treatment of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2024, 40(7): 1450-1458. doi: 10.12449/JCH240725
    [3]Chenlu ZHAO, Dongfang SHANG, Cheng ZHOU, Junhao SHI, Wenxia ZHAO. Mechanism of lipid metabolism mediated by hepatokines and adipokines in nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2023, 39(1): 168-174. doi: 10.3969/j.issn.1001-5256.2023.01.026
    [4]Yuesheng LIAO, Lili BAI. Role of exercise-induced autophagy in prevention and treatment of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2022, 38(5): 1156-1160. doi: 10.3969/j.issn.1001-5256.2022.05.038
    [5]Shaojie DUAN, Zunjing LIU, Jialiang CHEN, Shukun YAO. Value of lipid accumulation product and visceral fat index in predicting nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2022, 38(1): 129-134. doi: 10.3969/j.issn.1001-5256.2022.01.020
    [6]Yuting LUAN, Zhongming HUANG, Wenjuan SHEN, Minghao HA, Zhibing XU. Research advances in metabolomics in nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(4): 943-946. doi: 10.3969/j.issn.1001-5256.2021.04.047
    [7]Jingxia HE, Xiuqin AN, Jinchun LIU. Research advances in autophagy-related signal molecules in nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(9): 2220-2224. doi: 10.3969/j.issn.1001-5256.2021.09.044
    [8]Weichun XIAO, Wei AN. Role of mitochondrial injury in the development and progression of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(7): 1515-1521. doi: 10.3969/j.issn.1001-5256.2021.07.005
    [9]Qin LIU, Qiang ZHANG, Fangxiong WU, Rong YAN, Rong LI, Jia WANG, Chunyan NIU. Effect of amitriptyline on lipid deposition and biochemical metabolism in a cell model of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(1): 99-104. doi: 10.3969/j.issn.1001-5256.2021.01.020
    [10]Jiahe ZHAO, Xinyu MA, Jingya XU, Tingting DUAN, Chunlei ZHANG, Baolong LI. Research advances in related factors for autophagy in the regulation of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(7): 1713-1717. doi: 10.3969/j.issn.1001-5256.2021.07.050
    [11]Lihui ZHANG, Minghao LIU, Wenxia ZHAO. Role of lipotoxicity in the development and progression of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(2): 463-466. doi: 10.3969/j.issn.1001-5256.2021.02.045
    [12]Gao JingJing, Wang Tao, Jiang YuanYe, Cao Qin. Metabonomics and traditional Chinese medicine syndrome of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(8): 1880-1882. doi: 10.3969/j.issn.1001-5256.2020.08.044
    [13]Xu ZiXin, Luo ShengZheng, Xu MingYi. Mechanism of mitochondrial dysfunction in the development of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(10): 2353-2355. doi: 10.3969/j.issn.1001-5256.2020.10.042
    [14]ZHANG SuYan, XIA EnRui, ZHOU QingLi, ZHANG ShunZhen. Effect of Quzhi Ruangan decoction on the mRNA and protein expression of organic anion transporting polypeptide 2B1 in the small intestine of rats with nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(11): 2484-2488. doi: 10.3969/j.issn.1001-5256.2020.11.017
    [15]Zhou ZhenHua, Wang LingTai, Gao YueQiu. Role of hepatocyte mitophagy in the pathogenesis of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2019, 35(12): 2809-2811. doi: 10.3969/j.issn.1001-5256.2019.12.036
    [16]Guo Yan, Huang Li, Yang GuoChao, Liu Shan, Du LinNa, Wang MinJuan. Association between nonalcoholic fatty liver disease and dietary inflammation index and its practical significance[J]. Journal of Clinical Hepatology, 2019, 35(10): 2324-2326. doi: 10.3969/j.issn.1001-5256.2019.10.042
    [17]Zhou Fan, Peng JunWei, Fan FuGang, Jiang YuanYe, Cao Qin. Interrelation between autophagy and oxidative stress in pathogenesis of nonalcoholic fatty liver[J]. Journal of Clinical Hepatology, 2018, 34(8): 1805-1808. doi: 10.3969/j.issn.1001-5256.2018.08.048
    [18]Ding Jie, Wang Liang, Li Juan, Kong Yin, Zhao Rui, He JingJing, Li GuangMing, Wang JuanXia, Zhang LingYi. Changes in serum asymmetric dimethylarginine levels in progression of liver inflammation in an experimental rat model of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2016, 32(1): 148-151. doi: 10.3969/j.issn.1001-5256.2016.01.029
    [19]Zhu JuanJuan, Cheng MingLiang, Zhao XueKe. Role of liver immunological inflammation in development and progression of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2016, 32(3): 570-573. doi: 10.3969/j.issn.1001-5256.2016.03.038
    [20]Lu Ran, Hong TianPei. Roles of abnormal lipid metabolism in pathogenesis of non- alcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2015, 31(7): 1050-1054. doi: 10.3969/j.issn.1001-5256.2015.07.013
  • Cited by

    Periodical cited type(1)

    1. 李志敏,李诗然,谢婧娴,张娇,李鹏飞,曾思羽,杨勇. 妊娠合并高甘油三酯血症诊治和管理研究进展. 中国临床药理学与治疗学. 2024(12): 1380-1388 .

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (288) PDF downloads(37) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return