[1] |
RUTHERFORD MJ, ARNOLD M, BARDOT A, et al. Comparison of liver cancer incidence and survival by subtypes across seven high-income countries[J]. Int J Cancer, 2021, 149(12): 2020-2031. DOI: 10.1002/ijc.33767.
|
[2] |
LV D, CHEN L, DU L, et al. Emerging regulatory mechanisms involved in liver cancer stem cell properties in hepatocellular carcinoma[J]. Front Cell Dev Biol, 2021, 9: 691410. DOI: 10.3389/fcell.2021.691410.
|
[3] |
ZHENG X, YU C, XU M. Linking tumor microenvironment to plasticity of cancer stem cells: mechanisms and application in cancer therapy[J]. Front Oncol, 2021, 11: 678333. DOI: 10.3389/fonc.2021.678333.
|
[4] |
TONTI OR, LARSON H, LIPP SN, et al. Tissue-specific parameters for the design of ECM-mimetic biomaterials[J]. Acta Biomater, 2021, 132: 83-102. DOI: 10.1016/j.actbio.2021.04.017.
|
[5] |
YE J, WU D, WU P, et al. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment[J]. Tumour Biol, 2014, 35(5): 3945-3951. DOI: 10.1007/s13277-013-1561-x.
|
[6] |
LAM KH, MA S. Noncellular components in the liver cancer stem cell niche: Biology and potential clinical implications[J]. Hepatology, 2022. DOI: 10.1002/hep.32629. [Online ahead of print]
|
[7] |
KAPLAN RN, RIBA RD, ZACHAROULIS S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature, 2005, 438(7069): 820-827. DOI: 10.1038/nature04186.
|
[8] |
ZHENG N, ZHANG S, WU W, et al. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma[J]. Pharmacol Res, 2021, 166: 105507. DOI: 10.1016/j.phrs.2021.105507.
|
[9] |
GUO Y, XIAO Z, YANG L, et al. Hypoxia-inducible factors in hepatocellular carcinoma (Review)[J]. Oncol Rep, 2020, 43(1): 3-15. DOI: 10.3892/or.2019.7397.
|
[10] |
BORT A, SÁNCHEZ BG, MATEOS-GÓMEZ PA, et al. Targeting AMP-activated kinase impacts hepatocellular cancer stem cells induced by long-term treatment with sorafenib[J]. Mol Oncol, 2019, 13(5): 1311-1331. DOI: 10.1002/1878-0261.12488.
|
[11] |
JING L, RUAN Z, SUN H, et al. Epithelial-mesenchymal transition induced cancer-stem-cell-like characteristics in hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234(10): 18448-18458. DOI: 10.1002/jcp.28480.
|
[12] |
CHENG Z, LI X, DING J. Characteristics of liver cancer stem cells and clinical correlations[J]. Cancer Lett, 2016, 379(2): 230-238. DOI: 10.1016/j.canlet.2015.07.041.
|
[13] |
PATIL SM, SAWANT SS, KUNDA NK. Exosomes as drug delivery systems: A brief overview and progress update[J]. Eur J Pharm Biopharm, 2020, 154: 259-269. DOI: 10.1016/j.ejpb.2020.07.026.
|
[14] |
CHEN H, NIO K, YAMASHITA T, et al. BMP9-ID1 signaling promotes EpCAM-positive cancer stem cell properties in hepatocellular carcinoma[J]. Mol Oncol, 2021, 15(8): 2203-2218. DOI: 10.1002/1878-0261.12963.
|
[15] |
MODI SJ, KULKARNI VM. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGFβ induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma[J]. Eur J Med Chem, 2020, 207: 112851. DOI: 10.1016/j.ejmech.2020.112851.
|
[16] |
FUJITA J, SAKURAI T. The oncoprotein gankyrin/PSMD10 as a target of cancer therapy[J]. Adv Exp Med Biol, 2019, 1164: 63-71. DOI: 10.1007/978-3-030-22254-3_5.
|
[17] |
JAFERIAN S, SOLEYMANINEJAD M, NEGAHDARI B, et al. Stem cell, biomaterials and growth factors therapy for hepatocellular carcinoma[J]. Biomed Pharmacother, 2017, 88: 1046-1053. DOI: 10.1016/j.biopha.2017.01.154.
|
[18] |
YAMASHITA T, HONDA M, NIO K, et al. Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation[J]. Cancer Res, 2010, 70(11): 4687-4697. DOI: 10.1158/0008-5472.CAN-09-4210.
|
[19] |
ZHENG W, YAO M, WU M, et al. Secretory clusterin promotes hepatocellular carcinoma progression by facilitating cancer stem cell properties via AKT/GSK-3β/β-catenin axis[J]. J Transl Med, 2020, 18(1): 81. DOI: 10.1186/s12967-020-02262-7.
|
[20] |
CHEN L, CHENG MM, LI YP, et al. 4, 4'-Bond secalonic acid D targets SP cells and inhibits metastasis in hepatocellular carcinoma[J]. Mol Med Rep, 2020, 21(6): 2624-2632. DOI: 10.3892/mmr.2020.11055.
|
[21] |
EGUCHI T, SHETA M, FUJⅡ M, et al. Cancer extracellular vesicles, tumoroid models, and tumor microenvironment[J]. Semin Cancer Biol, 2022, 86(Pt 1): 112-126. DOI: 10.1016/j.semcancer.2022.01.003.
|
[22] |
ZHANG G, HUANG X, XIU H, et al. Extracellular vesicles: Natural liver-accumulating drug delivery vehicles for the treatment of liver diseases[J]. J Extracell Vesicles, 2020, 10(2): e12030. DOI: 10.1002/jev2.12030.
|
[23] |
BORRELLI DA, YANKSON K, SHUKLA N, et al. Extracellular vesicle therapeutics for liver disease[J]. J Control Release, 2018, 273: 86-98. DOI: 10.1016/j.jconrel.2018.01.022.
|
[24] |
AFIFY SM, HASSAN G, YAN T, et al. Cancer stem cell initiation by tumor-derived extracellular vesicles[J]. Methods Mol Biol, 2022, 2549: 399-407. DOI: 10.1007/7651_2021_371.
|
[25] |
WANG H, LU Z, ZHAO X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer[J]. J Hematol Oncol, 2019, 12(1): 133. DOI: 10.1186/s13045-019-0806-6.
|
[26] |
JI J, YAMASHITA T, BUDHU A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells[J]. Hepatology, 2009, 50(2): 472-480. DOI: 10.1002/hep.22989.
|
[27] |
YUAN SX, WANG J, YANG F, et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1[J]. Hepatology, 2016, 63(2): 499-511. DOI: 10.1002/hep.27893.
|
[28] |
LI N. The study on fuction and molecular mechanism of p28~(Gank)、IRAKI in macrophage and HCC[D]. Shanghai: Shanghai Jiao Tong University, 2015. DOI:
李宁. p28~(Gank)、IRAK1在巨噬细胞以及肝癌中的功能及机制研究[D]. 上海: 上海交通大学, 2015. DOI:
|
[29] |
ZHAO Z, BAI S, WANG R, et al. Cancer-associated fibroblasts endow stem-like qualities to liver cancer cells by modulating autophagy[J]. Cancer Manag Res, 2019, 11: 5737-5744. DOI: 10.2147/CMAR.S197634.
|
[30] |
LUO Q, WANG J, ZHAO W, et al. Vasculogenic mimicry in carcinogenesis and clinical applications[J]. J Hematol Oncol, 2020, 13(1): 19. DOI: 10.1186/s13045-020-00858-6.
|
[31] |
ARVANITAKIS K, KOLETSA T, MITROULIS I, et al. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy[J]. Cancers (Basel), 2022, 14(1): 226. DOI: 10.3390/cancers14010226.
|
[32] |
ZHAO X, SUN B, LIU T, et al. Long noncoding RNA n339260 promotes vasculogenic mimicry and cancer stem cell development in hepatocellular carcinoma[J]. Cancer Sci, 2018, 109(10): 3197-3208. DOI: 10.1111/cas.13740.
|
[33] |
DONGRE A, WEINBERG RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. DOI: 10.1038/s41580-018-0080-4.
|
[34] |
YU LX, LING Y, WANG HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression[J]. NPJ Precis Oncol, 2018, 2(1): 6. DOI: 10.1038/s41698-018-0048-z.
|
[35] |
SETLAI BP, HULL R, BIDA M, et al. Immunosuppressive signaling pathways as targeted cancer therapies[J]. Biomedicines, 2022, 10(3): 682. DOI: 10.3390/biomedicines10030682.
|
[36] |
WEI R, ZHU WW, YU GY, et al. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma[J]. Int J Cancer, 2021, 148(5): 1233-1244. DOI: 10.1002/ijc.33371.
|
[37] |
MANIOTIS AJ, FOLBERG R, HESS A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI: 10.1016/S0002-9440(10)65173-5.
|
[38] |
HANAHAN D, COUSSENS LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-322. DOI: 10.1016/j.ccr.2012.02.022.
|
[39] |
BALKWILL FR, CAPASSO M, HAGEMANN T. The tumor microenvironment at a glance[J]. J Cell Sci, 2012, 125(Pt 23): 5591-5596. DOI: 10.1242/jcs.116392.
|
[40] |
EGGERT T, GRETEN TF. Tumor regulation of the tissue environment in the liver[J]. Pharmacol Ther, 2017, 173: 47-57. DOI: 10.1016/j.pharmthera.2017.02.005.
|
[41] |
CHEN A, XU C, LUO Y, et al. Disruption of crosstalk between LX-2 and liver cancer stem-like cells from MHCC97H cells by DFOG via inhibiting FOXM1[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(12): 1267-1275. DOI: 10.1093/abbs/gmz129.
|
[42] |
TAN Z, SUN H, XUE T, et al. Liver fibrosis: therapeutic targets and advances in drug therapy[J]. Front Cell Dev Biol, 2021, 9: 730176. DOI: 10.3389/fcell.2021.730176.
|
[43] |
WANG N, WANG S, LI MY, et al. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies[J]. Ther Adv Med Oncol, 2018, 10: 1758835918816287. DOI: 10.1177/1758835918816287.
|
[44] |
ZHOU W, YANG J, SAREN G, et al. HDAC6-specific inhibitor suppresses Th17 cell function via the HIF-1α pathway in acute lung allograft rejection in mice[J]. Theranostics, 2020, 10(15): 6790-6805. DOI: 10.7150/thno.44961.
|
[45] |
LLOVET JM, KELLEY RK, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3.
|
[46] |
SALAH MM, ASHOUR AA, ABDELGHANY TM, et al. Pirfenidone alleviates concanavalin A-induced liver fibrosis in mice[J]. Life Sci, 2019, 239: 116982. DOI: 10.1016/j.lfs.2019.116982.
|
[47] |
PENG Y, LI L, ZHANG X, et al. Fluorofenidone affects hepatic stellate cell activation in hepatic fibrosis by targeting the TGF-β1/Smad and MAPK signaling pathways[J]. Exp Ther Med, 2019, 18(1): 41-48. DOI: 10.3892/etm.2019.7548.
|
[48] |
STRAIGN DM, IHLE CL, PROVERA MD, et al. Targeting the BMP pathway in prostate cancer induced bone disease[J]. Front Endocrinol (Lausanne), 2021, 12: 769316. DOI: 10.3389/fendo.2021.769316.
|
[49] |
KUMARI S, ADVANI D, SHARMA S, et al. Combinatorial therapy in tumor microenvironment: Where do we stand?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188585. DOI: 10.1016/j.bbcan.2021.188585.
|
[50] |
CHENG Q, LI C, YANG CF, et al. Methyl ferulic acid attenuates liver fibrosis and hepatic stellate cell activation through the TGF-β1/Smad and NOX4/ROS pathways[J]. Chem Biol Interact, 2019, 299: 131-139. DOI: 10.1016/j.cbi.2018.12.006.
|
[51] |
FRIEDMAN SL, RATZIU V, HARRISON SA, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis[J]. Hepatology, 2018, 67(5): 1754-1767. DOI: 10.1002/hep.29477.
|
[52] |
RATAJCZAK MZ, RATAJCZAK J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future?[J]. Leukemia, 2020, 34(12): 3126-3135. DOI: 10.1038/s41375-020-01041-z.
|