中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Application of artificial intelligence in liver transplantation

DOI: 10.3969/j.issn.1001-5256.2022.01.005
Research funding:

The Major State Research Development Program during the 13rd Five-Year Plan Period (2017ZX10203205-006-001);

National Key R & D Program of China (2017YFA0104304);

National Natural Science Foundation of China (82103448);

National Natural Science Foundation of China (81770648);

National Natural Science Foundation of China (81972286);

Guangdong Basic and Applied Basic Research Foundation (2019A1515110654);

Natural Science Foundation of Guangdong Province (2015A030312013);

Science and Technology Program of Guangdong Province (2017B020209004);

Science and Technology Program of Guangdong Province (20169013);

Science and Technology Program of Guangdong Province (2020B1212060019);

Science and Technology Program of Guangzhou (201508020262)

  • Received Date: 2021-10-11
  • Accepted Date: 2021-10-11
  • Published Date: 2022-01-20
  • With the advent of the era of 5G and big data, complex medical data with multiple dimensions and a large sample size bring both opportunities and challenges for clinical medicine in the new era. Compared with conventional methods, artificial intelligence can detect the hidden patterns within large datasets, and more and more scholars are applying such advanced technology in the diagnosis and treatment of diseases. After development and perfection for more than half a century, liver transplantation has become the most effective treatment method for end-stage liver diseases. Unlike the analysis of "single-patient" data in other fields, liver transplantation usually requires the consideration of the features of both the donor and the recipient and the variables during transplantation, thus generating a larger volume of medical data than other diseases, which is particularly in line with the advantages of artificial intelligence. Effective application of artificial intelligence and its combination with clinical research will usher in the new era of precision medicine. The advantages and limitations of artificial intelligence technology should be comprehensively discussed for the cross-application of artificial intelligence in liver transplantation, and the future directions of this field should also be proposed.

     

  • [1]
    PASTORINO R, de VITO C, MIGLIARA G, et al. Benefits and challenges of Big Data in healthcare: An overview of the European initiatives[J]. Eur J Public Health, 2019, 29(Supplement_3): 23-27. DOI: 10.1093/eurpub/ckz168.
    [2]
    TRAN BX, VU GT, HA GH, et al. Global evolution of research in artificial intelligence in health and medicine: A bibliometric study[J]. J Clin Med, 2019, 8(3): 360. DOI: 10.3390/jcm8030360.
    [3]
    DARCY AM, LOUIE AK, ROBERTS LW. Machine learning and the profession of medicine[J]. JAMA, 2016, 315(6): 551-552. DOI: 10.1001/jama.2015.18421.
    [4]
    ESTEVA A, ROBICQUET A, RAMSUNDAR B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. DOI: 10.1038/s41591-018-0316-z.
    [5]
    MCCORMACK L, PETROWSKY H, JOCHUM W, et al. Use of severely steatotic grafts in liver transplantation: A matched case-control study[J]. Ann Surg, 2007, 246(6): 940-946; discussion 946-948. DOI: 10.1097/SLA.0b013e31815c2a3f.
    [6]
    VOLK ML, RONEY M, MERION RM. Systematic bias in surgeons' predictions of the donor-specific risk of liver transplant graft failure[J]. Liver Transpl, 2013, 19(9): 987-990. DOI: 10.1002/lt.23683.
    [7]
    KUPPILI V, BISWAS M, SREEKUMAR A, et al. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization[J]. J Med Syst, 2017, 41(10): 152. DOI: 10.1007/s10916-017-0797-1.
    [8]
    BYRA M, STYCZYNSKI G, SZMIGIELSKI C, et al. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images[J]. Int J Comput Assist Radiol Surg, 2018, 13(12): 1895-1903. DOI: 10.1007/s11548-018-1843-2.
    [9]
    VANDERBECK S, BOCKHORST J, KOMOROWSKI R, et al. Automatic classification of white regions in liver biopsies by supervised machine learning[J]. Hum Pathol, 2014, 45(4): 785-792. DOI: 10.1016/j.humpath.2013.11.011.
    [10]
    MOCCIA S, MATTOS LS, PATRINI I, et al. Computer-assisted liver graft steatosis assessment via learning-based texture analysis[J]. Int J Comput Assist Radiol Surg, 2018, 13(9): 1357-1367. DOI: 10.1007/s11548-018-1787-6.
    [11]
    CESARETTI M, BRUSTIA R, GOUMARD C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis assessment[J]. Liver Transpl, 2020, 26(10): 1224-1232. DOI: 10.1002/lt.25801.
    [12]
    CROOME KP, MAROTTA P, WALL WJ, et al. Should a lower quality organ go to the least sick patient? Model for end-stage liver disease score and donor risk index as predictors of early allograft dysfunction[J]. Transplant Proc, 2012, 44(5): 1303-1306. DOI: 10.1016/j.transproceed.2012.01.115.
    [13]
    BRICEÑO J, CRUZ-RAMÍREZ M, PRIETO M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study[J]. J Hepatol, 2014, 61(5): 1020-1028. DOI: 10.1016/j.jhep.2014.05.039.
    [14]
    BRICEÑO J, AYLLÓN MD, CIRIA R. Machine-learning algorithms for predicting results in liver transplantation: The problem of donor-recipient matching[J]. Curr Opin Organ Transplant, 2020, 25(4): 406-411. DOI: 10.1097/MOT.0000000000000781.
    [16]
    DORADO-MORENO M, PÉREZ-ORTIZ M, GUTIÉRREZ PA, et al. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem[J]. Artif Intell Med, 2017, 77: 1-11. DOI: 10.1016/j.artmed.2017.02.004.
    [17]
    CRUZ-RAMÍREZ M, HERVÁS-MARTÍNEZ C, FERNÁNDEZ JC, et al. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks[J]. Artif Intell Med, 2013, 58(1): 37-49. DOI: 10.1016/j.artmed.2013.02.004.
    [18]
    BERTSIMAS D, KUNG J, TRICHAKIS N, et al. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation[J]. Am J Transplant, 2019, 19(4): 1109-1118. DOI: 10.1111/ajt.15172.
    [19]
    GUIJO-RUBIO D, BRICEÑO J, GUTIÉRREZ PA, et al. Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation[J]. PLoS One, 2021, 16(5): e0252068. DOI: 10.1371/journal.pone.0252068.
    [20]
    VAGEFI PA, BERTSIMAS D, HIROSE R, et al. The rise and fall of the model for end-stage liver disease score and the need for an optimized machine learning approach for liver allocation[J]. Curr Opin Organ Transplant, 2020, 25(2): 122-125. DOI: 10.1097/MOT.0000000000000734.
    [21]
    WINGFIELD LR, CERESA C, THOROGOOD S, et al. Using artificial intelligence for predicting survival of individual grafts in liver transplantation: A systematic review[J]. Liver Transpl, 2020, 26(7): 922-934. DOI: 10.1002/lt.25772.
    [22]
    LIU CL, SOONG RS, LEE WC, et al. Predicting short-term survival after liver transplantation using machine learning[J]. Sci Rep, 2020, 10(1): 5654. DOI: 10.1038/s41598-020-62387-z.
    [23]
    CHEN C, YANG D, GAO S, et al. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation[J]. Respir Res, 2021, 22(1): 94. DOI: 10.1186/s12931-021-01690-3.
    [24]
    HOOT N, ARONSKY D. Using Bayesian networks to predict survival of liver transplant patients[J]. AMIA Annu Symp Proc, 2005, 2005: 345-349.
    [25]
    KANTIDAKIS G, PUTTER H, LANCIA C, et al. Survival prediction models since liver transplantation-comparisons between Cox models and machine learning techniques[J]. BMC Med Res Methodol, 2020, 20(1): 277. DOI: 10.1186/s12874-020-01153-1.
    [26]
    ZHANG M, YIN F, CHEN B, et al. Mortality risk after liver transplantation in hepatocellular carcinoma recipients: A nonlinear predictive model[J]. Surgery, 2012, 151(6): 889-897. DOI: 10.1016/j.surg.2011.12.034.
    [28]
    LAU L, KANKANIGE Y, RUBINSTEIN B, et al. Machine-learning algorithms predict graft failure after liver transplantation[J]. Transplantation, 2017, 101(4): e125-e132. DOI: 10.1097/TP.0000000000001600.
    [29]
    BHAT V, TAZARI M, WATT KD, et al. New-onset diabetes and preexisting diabetes are associated with comparable reduction in long-term survival after liver transplant: A machine learning approach[J]. Mayo Clin Proc, 2018, 93(12): 1794-1802. DOI: 10.1016/j.mayocp.2018.06.020.
    [30]
    ANDRES A, MONTANO-LOZA A, GREINER R, et al. A novel learning algorithm to predict individual survival after liver transplantation for primary sclerosing cholangitis[J]. PLoS One, 2018, 13(3): e0193523. DOI: 10.1371/journal.pone.0193523.
    [31]
    WADHWANI SI, HSU EK, SHAFFER ML, et al. Predicting ideal outcome after pediatric liver transplantation: An exploratory study using machine learning analyses to leverage studies of pediatric liver transplantation data[J]. Pediatr Transplant, 2019, 23(7): e13554. DOI: 10.1111/petr.13554.
    [32]
    YASODHARA A, DONG V, AZHIE A, et al. Identifying modifiable predictors of long-term survival in liver transplant recipients with diabetes mellitus using machine learning[J]. Liver Transpl, 2021, 27(4): 536-547. DOI: 10.1002/lt.25930.
    [33]
    JAIN V, BANSAL A, RADAKOVICH N, et al. Machine learning models to predict major adverse cardiovascular events after orthotopic liver transplantation: A cohort study[J]. J Cardiothorac Vasc Anesth, 2021, 35(7): 2063-2069. DOI: 10.1053/j.jvca.2021.02.006.
    [34]
    ZHANG Y, YANG D, LIU Z, et al. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation[J]. J Transl Med, 2021, 19(1): 321. DOI: 10.1186/s12967-021-02990-4.
    [35]
    JIANG YQ, CAO SE, CAO S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833. DOI: 10.1007/s00432-020-03366-9.
    [36]
    AKBILGIC O, DAVIS RL. The promise of machine learning: When will it be delivered?[J]. J Card Fail, 2019, 25(6): 484-485. DOI: 10.1016/j.cardfail.2019.04.006.
    [37]
    CARUANA R, LOU Y, GEHRKE J, et al. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission[C]. ACM, 2015.
  • Relative Articles

    [1]Huajie XIE, Kai CHANG, Yanyan WANG, Wanlin NA, Huan CAI, Xia LIU, Zhongyong JIANG, Zonghai HU, Yuan LIU. Characteristics of mitochondrial translational initiation factor 2 gene methylation and its association with the development of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2025, 41(2): 284-291. doi: 10.12449/JCH250214
    [2]Yuwen ZENG, Fangyong ZHANG, Guoqian TAN, Fan WU. Expression and biological role of the neutral cholesterol ester hydrolase 1 gene in liver cancer tissue and cell lines[J]. Journal of Clinical Hepatology, 2021, 37(8): 1867-1872. doi: 10.3969/j.issn.1001-5256.2021.08.023
    [3]Zhou HuiFang, Wei HeRu, Ma ShiChao, Zhang ChaoQun, Wang JunPing, Yang XinYing, Xie Ying, Sun DianXing. Construction of the eukaryotic expression vector of collagen triple helix repeat containing 1 gene and its association with microRNA-30b[J]. Journal of Clinical Hepatology, 2020, 36(2): 377-380. doi: 10.3969/j.issn.1001-5256.2020.02.029
    [4]Zhou Yan, Ning Bo. Application of abnormal cell-free DNA methylation in pancreatic juice in the early diagnosis of pancreatic cancer[J]. Journal of Clinical Hepatology, 2020, 36(9): 2145-2148. doi: 10.3969/j.issn.1001-5256.2020.09.054
    [5]Xu Chu, Zhang PingAn. Influence of hepatitis C virus on the expression of lipid metabolism indices[J]. Journal of Clinical Hepatology, 2019, 35(5): 987-991. doi: 10.3969/j.issn.1001-5256.2019.05.011
    [6]Liu Tao, Xu QiuLing. Spleen-strengthening and dampness-removing therapy exerts a therapeutic effect on nonalcoholic fatty liver disease by regulating hepatic MTP promoter methylation[J]. Journal of Clinical Hepatology, 2019, 35(3): 661-664. doi: 10.3969/j.issn.1001-5256.2019.03.047
    [7]Li KeXin, Zang MengYa, Wang DongMei, He Huan, Wang YuTing, Qu ChunFeng. Effect of interleukin-17A on stemness of hepatoma cell lines[J]. Journal of Clinical Hepatology, 2017, 33(6): 1131-1136. doi: 10.3969/j.issn.1001-5256.2017.06.023
    [8]Shi JuanJuan, Yang Ning, Zhang Xin, Wu FengPing, Li Mei, Gao Ning, Jia XiaoLi, Zhai Song, Dang ShuangSuo. Effect of prohibitin on hepatitis C virus replication[J]. Journal of Clinical Hepatology, 2016, 32(9): 1729-1733. doi: 10.3969/j.issn.1001-5256.2016.09.019
    [9]Cheng KangWen, Li Qi, Zhan YongQiang, Wang ChengYou, Wang GuiHe, Ni Yong, Zhu BaoHe, Deng XueSong. Effects of 5-fluorouracil on biological characteristics and drug resistance mechanisms of liver cancer cell line PLC/RAF/5[J]. Journal of Clinical Hepatology, 2015, 31(9): 1458-1463. doi: 10.3969/j.issn.1001-5256.2015.09.023
    [10]Li HaiPing, Gao Bo, Yu ZongTao, Liu JiuBo, Zhang JiCai. Significance of detection of multigene methylation in liver cancer tissue for early diagnosis of liver cancer[J]. Journal of Clinical Hepatology, 2013, 29(8): 624-626. doi: 10.3969/j.issn.1001-5256.2013.08.018
    [11]Lu: Xin, Yin Wen, Sun MengNing, Huang XiaoJun, Yang Jing, Yao Min, Xue XiaoPing, Jia ZhanSheng, Xu ZhiKai. Construction of eukaryotic expression vector of HCV CTL epitopes and establishment of stable transfected CHO cell line[J]. Journal of Clinical Hepatology, 2011, 27(1): 45-48.
    [12]Zhang JunXia, Wang Yan, Zhao YanPing, Zhang Bei, Li Jia, Huang Jian. p14ARF promoter methylation and its clinical correlation in primary liver cancer in the population of North China[J]. Journal of Clinical Hepatology, 2011, 27(10): 1051-1054.
    [13]Zhang HuiJing, Li ShengMian. Promoter methylation in APC, RASSF1A, WIF-1 gene in digestive system tumors[J]. Journal of Clinical Hepatology, 2011, 27(4): 429-432.
    [14]Xiong QiXiang, Xiong LiJuan. Hepatitis B virus infection and DNA methylation in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2011, 27(8): 881-884.
    [15]Li HongTao, Xu LiYu, Gan HongJun, Zhang YuanYuan, Liu Yong, Lu MingZhi. The expression and significance of p16 and cyclin D1 in gallbladder carcinoma[J]. Journal of Clinical Hepatology, 2010, 26(2): 199-202.
    [16]Guo XiaoLin, Jiang YaQiu, Chi BaoRong. The clinical significance of C-myc and P16 gene's expression in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2007, 23(6): 440-441.
    [19]Gu HuaPing, Liu YanRu, Shang PeiZhong. The Expression of sialyl lewis-X antigen and P16 and its relationship with biological behaviors in cholangiocarcinoma[J]. Journal of Clinical Hepatology, 2003, 19(3): 159-160.
    [20]Meng ZhiLan, Ye DaXiong, Song XiaoHua, Yang ChunMing, Zhang Ning. P16 protein expression and DNA quantitative analysis in human hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2003, 19(3): 154-155.
  • Cited by

    Periodical cited type(5)

    1. 刘松涛,孟庆华,刘梅,韩亚男,王金环,闾军. 急性/亚急性肝衰竭患者急性肾损伤发生率和预后分析. 实用肝脏病杂志. 2024(02): 222-225 .
    2. 尚梦月,仝亚林,陈永忠,保洁. 急性肝衰竭并发急性肾损伤的影响因素及预测模型. 临床肝胆病杂志. 2023(02): 359-364 . 本站查看
    3. 吕佳璇,李月红. 肝功能衰竭与急性肾损伤. 临床内科杂志. 2022(06): 368-371 .
    4. 庄焱,谢青. 肝衰竭并发急性肾损伤热点研究新进展. 临床肝胆病杂志. 2018(09): 1836-1841 . 本站查看
    5. 奚春妹,李红娜. 乙型肝炎病毒相关亚急性肝衰竭患者预后影响因素分析. 中国医学前沿杂志(电子版). 2018(10): 102-105 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 2.7 %FULLTEXT: 2.7 %META: 92.7 %META: 92.7 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.7 %其他: 8.7 %其他: 0.4 %其他: 0.4 %Canton: 0.5 %Canton: 0.5 %Howard: 0.5 %Howard: 0.5 %India: 0.4 %India: 0.4 %Lewisburg: 0.2 %Lewisburg: 0.2 %Norman: 0.2 %Norman: 0.2 %Rochester: 0.4 %Rochester: 0.4 %United States: 0.4 %United States: 0.4 %上海: 2.4 %上海: 2.4 %凤凰城: 0.2 %凤凰城: 0.2 %北京: 4.9 %北京: 4.9 %南宁: 0.5 %南宁: 0.5 %卡罗尔顿: 0.2 %卡罗尔顿: 0.2 %台州: 1.8 %台州: 1.8 %吉林: 0.7 %吉林: 0.7 %哥伦布: 0.2 %哥伦布: 0.2 %圣保罗: 0.2 %圣保罗: 0.2 %埃文斯维尔: 0.2 %埃文斯维尔: 0.2 %天津: 0.9 %天津: 0.9 %奥兰多: 0.2 %奥兰多: 0.2 %安條克: 0.4 %安條克: 0.4 %布雷登顿: 0.4 %布雷登顿: 0.4 %张家口: 4.2 %张家口: 4.2 %成都: 0.4 %成都: 0.4 %昆明: 0.2 %昆明: 0.2 %本德: 0.2 %本德: 0.2 %杭州: 1.1 %杭州: 1.1 %沃思堡: 0.7 %沃思堡: 0.7 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.2 %海得拉巴: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 1.5 %湖州: 1.5 %福州: 0.4 %福州: 0.4 %科珀斯克里斯蒂: 0.2 %科珀斯克里斯蒂: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽卡斯尔: 0.2 %纽卡斯尔: 0.2 %纽敦: 0.2 %纽敦: 0.2 %纽瓦克: 0.2 %纽瓦克: 0.2 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 32.8 %芒廷维尤: 32.8 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.4 %苏州: 0.4 %莫斯科: 2.0 %莫斯科: 2.0 %衢州: 1.5 %衢州: 1.5 %西宁: 25.1 %西宁: 25.1 %费城: 0.2 %费城: 0.2 %金华: 0.4 %金华: 0.4 %银川: 0.4 %银川: 0.4 %长春: 0.5 %长春: 0.5 %长沙: 0.4 %长沙: 0.4 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %其他其他CantonHowardIndiaLewisburgNormanRochesterUnited States上海凤凰城北京南宁卡罗尔顿台州吉林哥伦布圣保罗埃文斯维尔天津奥兰多安條克布雷登顿张家口成都昆明本德杭州沃思堡沈阳济南海得拉巴温州湖州福州科珀斯克里斯蒂秦皇岛纽卡斯尔纽敦纽瓦克纽约芒廷维尤芝加哥苏州莫斯科衢州西宁费城金华银川长春长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (930) PDF downloads(125) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return