[1] |
PASTORINO R, de VITO C, MIGLIARA G, et al. Benefits and challenges of Big Data in healthcare: An overview of the European initiatives[J]. Eur J Public Health, 2019, 29(Supplement_3): 23-27. DOI: 10.1093/eurpub/ckz168.
|
[2] |
TRAN BX, VU GT, HA GH, et al. Global evolution of research in artificial intelligence in health and medicine: A bibliometric study[J]. J Clin Med, 2019, 8(3): 360. DOI: 10.3390/jcm8030360.
|
[3] |
DARCY AM, LOUIE AK, ROBERTS LW. Machine learning and the profession of medicine[J]. JAMA, 2016, 315(6): 551-552. DOI: 10.1001/jama.2015.18421.
|
[4] |
ESTEVA A, ROBICQUET A, RAMSUNDAR B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. DOI: 10.1038/s41591-018-0316-z.
|
[5] |
MCCORMACK L, PETROWSKY H, JOCHUM W, et al. Use of severely steatotic grafts in liver transplantation: A matched case-control study[J]. Ann Surg, 2007, 246(6): 940-946; discussion 946-948. DOI: 10.1097/SLA.0b013e31815c2a3f.
|
[6] |
VOLK ML, RONEY M, MERION RM. Systematic bias in surgeons' predictions of the donor-specific risk of liver transplant graft failure[J]. Liver Transpl, 2013, 19(9): 987-990. DOI: 10.1002/lt.23683.
|
[7] |
KUPPILI V, BISWAS M, SREEKUMAR A, et al. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization[J]. J Med Syst, 2017, 41(10): 152. DOI: 10.1007/s10916-017-0797-1.
|
[8] |
BYRA M, STYCZYNSKI G, SZMIGIELSKI C, et al. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images[J]. Int J Comput Assist Radiol Surg, 2018, 13(12): 1895-1903. DOI: 10.1007/s11548-018-1843-2.
|
[9] |
VANDERBECK S, BOCKHORST J, KOMOROWSKI R, et al. Automatic classification of white regions in liver biopsies by supervised machine learning[J]. Hum Pathol, 2014, 45(4): 785-792. DOI: 10.1016/j.humpath.2013.11.011.
|
[10] |
MOCCIA S, MATTOS LS, PATRINI I, et al. Computer-assisted liver graft steatosis assessment via learning-based texture analysis[J]. Int J Comput Assist Radiol Surg, 2018, 13(9): 1357-1367. DOI: 10.1007/s11548-018-1787-6.
|
[11] |
CESARETTI M, BRUSTIA R, GOUMARD C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis assessment[J]. Liver Transpl, 2020, 26(10): 1224-1232. DOI: 10.1002/lt.25801.
|
[12] |
CROOME KP, MAROTTA P, WALL WJ, et al. Should a lower quality organ go to the least sick patient? Model for end-stage liver disease score and donor risk index as predictors of early allograft dysfunction[J]. Transplant Proc, 2012, 44(5): 1303-1306. DOI: 10.1016/j.transproceed.2012.01.115.
|
[13] |
BRICEÑO J, CRUZ-RAMÍREZ M, PRIETO M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study[J]. J Hepatol, 2014, 61(5): 1020-1028. DOI: 10.1016/j.jhep.2014.05.039.
|
[14] |
BRICEÑO J, AYLLÓN MD, CIRIA R. Machine-learning algorithms for predicting results in liver transplantation: The problem of donor-recipient matching[J]. Curr Opin Organ Transplant, 2020, 25(4): 406-411. DOI: 10.1097/MOT.0000000000000781.
|
[16] |
DORADO-MORENO M, PÉREZ-ORTIZ M, GUTIÉRREZ PA, et al. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem[J]. Artif Intell Med, 2017, 77: 1-11. DOI: 10.1016/j.artmed.2017.02.004.
|
[17] |
CRUZ-RAMÍREZ M, HERVÁS-MARTÍNEZ C, FERNÁNDEZ JC, et al. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks[J]. Artif Intell Med, 2013, 58(1): 37-49. DOI: 10.1016/j.artmed.2013.02.004.
|
[18] |
BERTSIMAS D, KUNG J, TRICHAKIS N, et al. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation[J]. Am J Transplant, 2019, 19(4): 1109-1118. DOI: 10.1111/ajt.15172.
|
[19] |
GUIJO-RUBIO D, BRICEÑO J, GUTIÉRREZ PA, et al. Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation[J]. PLoS One, 2021, 16(5): e0252068. DOI: 10.1371/journal.pone.0252068.
|
[20] |
VAGEFI PA, BERTSIMAS D, HIROSE R, et al. The rise and fall of the model for end-stage liver disease score and the need for an optimized machine learning approach for liver allocation[J]. Curr Opin Organ Transplant, 2020, 25(2): 122-125. DOI: 10.1097/MOT.0000000000000734.
|
[21] |
WINGFIELD LR, CERESA C, THOROGOOD S, et al. Using artificial intelligence for predicting survival of individual grafts in liver transplantation: A systematic review[J]. Liver Transpl, 2020, 26(7): 922-934. DOI: 10.1002/lt.25772.
|
[22] |
LIU CL, SOONG RS, LEE WC, et al. Predicting short-term survival after liver transplantation using machine learning[J]. Sci Rep, 2020, 10(1): 5654. DOI: 10.1038/s41598-020-62387-z.
|
[23] |
CHEN C, YANG D, GAO S, et al. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation[J]. Respir Res, 2021, 22(1): 94. DOI: 10.1186/s12931-021-01690-3.
|
[24] |
HOOT N, ARONSKY D. Using Bayesian networks to predict survival of liver transplant patients[J]. AMIA Annu Symp Proc, 2005, 2005: 345-349.
|
[25] |
KANTIDAKIS G, PUTTER H, LANCIA C, et al. Survival prediction models since liver transplantation-comparisons between Cox models and machine learning techniques[J]. BMC Med Res Methodol, 2020, 20(1): 277. DOI: 10.1186/s12874-020-01153-1.
|
[26] |
ZHANG M, YIN F, CHEN B, et al. Mortality risk after liver transplantation in hepatocellular carcinoma recipients: A nonlinear predictive model[J]. Surgery, 2012, 151(6): 889-897. DOI: 10.1016/j.surg.2011.12.034.
|
[28] |
LAU L, KANKANIGE Y, RUBINSTEIN B, et al. Machine-learning algorithms predict graft failure after liver transplantation[J]. Transplantation, 2017, 101(4): e125-e132. DOI: 10.1097/TP.0000000000001600.
|
[29] |
BHAT V, TAZARI M, WATT KD, et al. New-onset diabetes and preexisting diabetes are associated with comparable reduction in long-term survival after liver transplant: A machine learning approach[J]. Mayo Clin Proc, 2018, 93(12): 1794-1802. DOI: 10.1016/j.mayocp.2018.06.020.
|
[30] |
ANDRES A, MONTANO-LOZA A, GREINER R, et al. A novel learning algorithm to predict individual survival after liver transplantation for primary sclerosing cholangitis[J]. PLoS One, 2018, 13(3): e0193523. DOI: 10.1371/journal.pone.0193523.
|
[31] |
WADHWANI SI, HSU EK, SHAFFER ML, et al. Predicting ideal outcome after pediatric liver transplantation: An exploratory study using machine learning analyses to leverage studies of pediatric liver transplantation data[J]. Pediatr Transplant, 2019, 23(7): e13554. DOI: 10.1111/petr.13554.
|
[32] |
YASODHARA A, DONG V, AZHIE A, et al. Identifying modifiable predictors of long-term survival in liver transplant recipients with diabetes mellitus using machine learning[J]. Liver Transpl, 2021, 27(4): 536-547. DOI: 10.1002/lt.25930.
|
[33] |
JAIN V, BANSAL A, RADAKOVICH N, et al. Machine learning models to predict major adverse cardiovascular events after orthotopic liver transplantation: A cohort study[J]. J Cardiothorac Vasc Anesth, 2021, 35(7): 2063-2069. DOI: 10.1053/j.jvca.2021.02.006.
|
[34] |
ZHANG Y, YANG D, LIU Z, et al. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation[J]. J Transl Med, 2021, 19(1): 321. DOI: 10.1186/s12967-021-02990-4.
|
[35] |
JIANG YQ, CAO SE, CAO S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833. DOI: 10.1007/s00432-020-03366-9.
|
[36] |
AKBILGIC O, DAVIS RL. The promise of machine learning: When will it be delivered?[J]. J Card Fail, 2019, 25(6): 484-485. DOI: 10.1016/j.cardfail.2019.04.006.
|
[37] |
CARUANA R, LOU Y, GEHRKE J, et al. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission[C]. ACM, 2015.
|
[1] | Huajie XIE, Kai CHANG, Yanyan WANG, Wanlin NA, Huan CAI, Xia LIU, Zhongyong JIANG, Zonghai HU, Yuan LIU. Characteristics of mitochondrial translational initiation factor 2 gene methylation and its association with the development of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2025, 41(2): 284-291. doi: 10.12449/JCH250214 |
[2] | Yuwen ZENG, Fangyong ZHANG, Guoqian TAN, Fan WU. Expression and biological role of the neutral cholesterol ester hydrolase 1 gene in liver cancer tissue and cell lines[J]. Journal of Clinical Hepatology, 2021, 37(8): 1867-1872. doi: 10.3969/j.issn.1001-5256.2021.08.023 |
[3] | Zhou HuiFang, Wei HeRu, Ma ShiChao, Zhang ChaoQun, Wang JunPing, Yang XinYing, Xie Ying, Sun DianXing. Construction of the eukaryotic expression vector of collagen triple helix repeat containing 1 gene and its association with microRNA-30b[J]. Journal of Clinical Hepatology, 2020, 36(2): 377-380. doi: 10.3969/j.issn.1001-5256.2020.02.029 |
[4] | Zhou Yan, Ning Bo. Application of abnormal cell-free DNA methylation in pancreatic juice in the early diagnosis of pancreatic cancer[J]. Journal of Clinical Hepatology, 2020, 36(9): 2145-2148. doi: 10.3969/j.issn.1001-5256.2020.09.054 |
[5] | Xu Chu, Zhang PingAn. Influence of hepatitis C virus on the expression of lipid metabolism indices[J]. Journal of Clinical Hepatology, 2019, 35(5): 987-991. doi: 10.3969/j.issn.1001-5256.2019.05.011 |
[6] | Liu Tao, Xu QiuLing. Spleen-strengthening and dampness-removing therapy exerts a therapeutic effect on nonalcoholic fatty liver disease by regulating hepatic MTP promoter methylation[J]. Journal of Clinical Hepatology, 2019, 35(3): 661-664. doi: 10.3969/j.issn.1001-5256.2019.03.047 |
[7] | Li KeXin, Zang MengYa, Wang DongMei, He Huan, Wang YuTing, Qu ChunFeng. Effect of interleukin-17A on stemness of hepatoma cell lines[J]. Journal of Clinical Hepatology, 2017, 33(6): 1131-1136. doi: 10.3969/j.issn.1001-5256.2017.06.023 |
[8] | Shi JuanJuan, Yang Ning, Zhang Xin, Wu FengPing, Li Mei, Gao Ning, Jia XiaoLi, Zhai Song, Dang ShuangSuo. Effect of prohibitin on hepatitis C virus replication[J]. Journal of Clinical Hepatology, 2016, 32(9): 1729-1733. doi: 10.3969/j.issn.1001-5256.2016.09.019 |
[9] | Cheng KangWen, Li Qi, Zhan YongQiang, Wang ChengYou, Wang GuiHe, Ni Yong, Zhu BaoHe, Deng XueSong. Effects of 5-fluorouracil on biological characteristics and drug resistance mechanisms of liver cancer cell line PLC/RAF/5[J]. Journal of Clinical Hepatology, 2015, 31(9): 1458-1463. doi: 10.3969/j.issn.1001-5256.2015.09.023 |
[10] | Li HaiPing, Gao Bo, Yu ZongTao, Liu JiuBo, Zhang JiCai. Significance of detection of multigene methylation in liver cancer tissue for early diagnosis of liver cancer[J]. Journal of Clinical Hepatology, 2013, 29(8): 624-626. doi: 10.3969/j.issn.1001-5256.2013.08.018 |
[11] | Lu: Xin, Yin Wen, Sun MengNing, Huang XiaoJun, Yang Jing, Yao Min, Xue XiaoPing, Jia ZhanSheng, Xu ZhiKai. Construction of eukaryotic expression vector of HCV CTL epitopes and establishment of stable transfected CHO cell line[J]. Journal of Clinical Hepatology, 2011, 27(1): 45-48. |
[12] | Zhang JunXia, Wang Yan, Zhao YanPing, Zhang Bei, Li Jia, Huang Jian. p14ARF promoter methylation and its clinical correlation in primary liver cancer in the population of North China[J]. Journal of Clinical Hepatology, 2011, 27(10): 1051-1054. |
[13] | Zhang HuiJing, Li ShengMian. Promoter methylation in APC, RASSF1A, WIF-1 gene in digestive system tumors[J]. Journal of Clinical Hepatology, 2011, 27(4): 429-432. |
[14] | Xiong QiXiang, Xiong LiJuan. Hepatitis B virus infection and DNA methylation in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2011, 27(8): 881-884. |
[15] | Li HongTao, Xu LiYu, Gan HongJun, Zhang YuanYuan, Liu Yong, Lu MingZhi. The expression and significance of p16 and cyclin D1 in gallbladder carcinoma[J]. Journal of Clinical Hepatology, 2010, 26(2): 199-202. |
[16] | Guo XiaoLin, Jiang YaQiu, Chi BaoRong. The clinical significance of C-myc and P16 gene's expression in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2007, 23(6): 440-441. |
[19] | Gu HuaPing, Liu YanRu, Shang PeiZhong. The Expression of sialyl lewis-X antigen and P16 and its relationship with biological behaviors in cholangiocarcinoma[J]. Journal of Clinical Hepatology, 2003, 19(3): 159-160. |
[20] | Meng ZhiLan, Ye DaXiong, Song XiaoHua, Yang ChunMing, Zhang Ning. P16 protein expression and DNA quantitative analysis in human hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2003, 19(3): 154-155. |
1. | 刘松涛,孟庆华,刘梅,韩亚男,王金环,闾军. 急性/亚急性肝衰竭患者急性肾损伤发生率和预后分析. 实用肝脏病杂志. 2024(02): 222-225 . ![]() | |
2. | 尚梦月,仝亚林,陈永忠,保洁. 急性肝衰竭并发急性肾损伤的影响因素及预测模型. 临床肝胆病杂志. 2023(02): 359-364 . ![]() | |
3. | 吕佳璇,李月红. 肝功能衰竭与急性肾损伤. 临床内科杂志. 2022(06): 368-371 . ![]() | |
4. | 庄焱,谢青. 肝衰竭并发急性肾损伤热点研究新进展. 临床肝胆病杂志. 2018(09): 1836-1841 . ![]() | |
5. | 奚春妹,李红娜. 乙型肝炎病毒相关亚急性肝衰竭患者预后影响因素分析. 中国医学前沿杂志(电子版). 2018(10): 102-105 . ![]() |